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1. Galaxy clusters and their connection to 
cosmology

2. How clusters' physics affects their use 
as cosmological probes

3. Outlook for cluster cosmology

Outline
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Abell 2218
NASA, A. Fruchter & ERO Team

Largest gravitationally bound 
objects in the Universe

    

1013  – 1015  solar masses (M
⊙
)

1 – 10 million light-years

    

~ 1% galaxies
~ 10% intracluster medium gas
~ 90% dark matter

Clusters of galaxies
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Clusters form 
through merging 
and accretion of 
smaller objects

Filament-void 
network:
matter collects in 
filaments, then 
flows toward 
intersections

Rich clusters lie at 
the intersections

Clusters in cosmological context
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~ 70% of the energy density of 
the Universe today is in a form 
whose gravitational influence is 
repulsive –  “dark energy”

Kowalski et al. 
(2008)

Dark energy
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The equation of state parameter is defined as

If w < –1/3, the expansion accelerates when 
de

 dominates.

Friedmann equations

Expansion rate

Rate of change of 
expansion rate

w t  ≡
Pde t 

de t c
2

Parametrize your ignorance
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Mohr (2005)

Cluster abundance as a 
function of mass and 
redshift

Depends on:

Volume-redshift relation 
dV/dz

Linear growth factor ( (z))

Power spectrum ( (M,z))

d 2 N
dM dz

=
dV
dz

n M ,z 

n M , z  ∝
b

 M ∫
c

∞

d exp − 2

22 

Counting clusters for cosmology
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Accurately predicted by N-body simulations (e.g. Warren et al. 2006)

● Evolution follows mass variance evolution to first order

Theoretically understood using excursion sets (Lacey & Cole 1993, 4)

● Shape reflects Gaussian process probability of exceeding collapse 
threshold

Lukić et al. 
(2007)

The dark matter halo mass function
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Optical/Infrared

Galaxies
Intracluster stars

Dark matter via 
gravitational lensing

X-Ray

Thermal hot gas

Radio

Nonthermal particles

Thermal hot gas via
Sunyaev-Zel'dovich 
effect (microwave)

Observing galaxy clusters
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Stanek et al. (2006)

X-ray luminosity

Popesso et al. (2005)

X-ray temperature
For clusters, many 
things correlate with 
mass

X-ray luminosity

X-ray temperature

Sunyaev-Zel'dovich effect

Isophotal size

Infrared luminosity

Massive clusters are a 
fairly regular population

Mass-observable scaling relations
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Dark Energy Survey (DES)

● Optical redshift catalog of ~ 107 
galaxies to z ~ 1.4

● 5000 deg2 survey of southern sky

● 500 Mpixel 4-color camera

South Pole Telescope (SPT)

● Microwave catalog of ~ 104 clusters

● 4000 deg2 survey at < 1' resolution

● 3 – 5 frequencies (95 – 350 GHz)

Survey volumes ~ 1 Gpc3

Cluster surveys to measure dark energy
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Direct N-body/gasdynamics + mock skies
● Directly form stars, AGN, etc. (perhaps with subgrid models)

● Simulate observations, including light travel time and 
response

● Compare with observations in “data space”

N-body + mass-observable relation*
● Mass function from simulations

● Assign observables based on observed scalings

Self-calibration* (Levine et al.; Lima & Hu; Majumdar & Mohr)

● Parametrize mass-observable relation

● Fit parameters along with cosmology

* Need to know the form and evolution of the intrinsic scatter!

P
h
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ic

s 
co

n
t e

n
t

E
a
se

Options for constraining cosmology
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The intracluster medium (ICM)

Collisionally ionized plasma

n
e
 ~ 10-3 cm-3

T ~ 107 - 108 K (1 – 10 keV)

Heavy element abundance   
~ 0.3 – 0.5 solar

Optically thin emission

Thermal bremsstrahlung  
(T > 107 K)

Recombination and line 
emission (T < 107 K)

Isobaric cooling time

t cool = 8.5×1010 ne

10−3 cm−3 
−1

 T

108 K 
1/2

 yr

Model X-ray spectra (Sarazin & Bahcall 77)
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Clusters are hydrostatic and spherical.

NOT!

Einstein data
Jones & Forman (82)
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Effects of cluster dynamics – FLASH
Yang et al. (2009, 2010)

256 h–1  Mpc

CDM cosmology: 
m0

 = 0.262, 
b0

 = 0.0437, h = 0.708, 
8
 = 0.74

X-ray mass-temperature relation 
at redshift 0
~ 600 clusters with M > 2x1012  M

⊙
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Centroid offset (Mohr et al. 1995)

Multipole power (Buote & Tsai 1995, 6)

Merger history (Cohn & White 2005)

● Use particle tags to trace halo 
progenitors

● Identify merging events using

● Mass jump – ratio of halo mass to 
mass of largest progenitor

● Mass ratio – ratio of masses of two 
largest progenitors 

1.0

0.8

0.6

0.4

0.2

0.01.5                       1.0                         0.5                      0.0
Redshift z

M
(z

) 
/ M

(0
)

Mergers

Dynamical state diagnostics
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Effects of cluster dynamics

z = 0, major mergers

Time since last merger (Gyr/h)

M
-T

X
 s

ca
t t

e
r

more disturbed 
<-----

M
-Y

 S
ca

t t
e
r

Centroid offset  (R
500

)

more disturbed

         ----->
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Effects of cluster dynamics
M

-T
X
 s

ca
t t

e
r

  M-(R
200

/R
500

) scatter

more concentrated 
<-----

 Formation lookback time  (Gyr)

M
-Y

 s
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t t
e
r

more concentrated 
----->
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Peterson et al. (03)Birzan et al. (08)

The ICM is “adiabatic.”

NOT!

Perseus A (z = 0.018)
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Magnetic fields are dynamically unimportant.

NOT!
Magnetic draping

Dursi & Pfrommer (08)

Even a weak field ( ~ 1 - 10) can stabilize magnetized bubbles 
against destruction by fluid instabilities



ANL – January 20, 2010 21

Direct simulation?

FORGET IT!
Cluster size ~ 1 Mpc
Accretion disks ~ 100 AU
⇒ Dynamic range ~ 2 x 109
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What can we afford?

Sustained 1 Pflop/s
Online June 2011

Time to solution:  1 month = 2.6 x 106 sec
⇒ Operations at 1 Pflop/s sustained:  2.6 x 1021

Operations per resolution element update: ~ 100 – 1000
⇒ Resolution element updates:  2.6 x 1018

⇒ Uniform resolution elements on a side in 3D:  40,000
AMR/SPH gain over uniform grid:  ~ 1000
⇒ Achievable dynamic range at petascale:  4 x 107

Cosmological simulations with 
realistic modeling of molecular 
clouds (~ 1 pc) achievable at 
petascale

Modeling of AGN accretion disks 
requires exascale (2020+)
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Magnetized AGN 
jet in model 
cluster

Sutter, Ricker, & 
Yang (09)
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Effects of cooling and AGN feedback
Yang et al. (2009)
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Effects of cooling and AGN feedback
Yang et al. (2009)
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Additional cluster physics

Anisotropic thermal 
conduction (Quataert, Parrish, 
Sharma, Chandran)

● Modified convective 
instability criteria?

Electron-ion nonequilibrium 
(Takizawa, Rudd, Nagai)

Nonzero viscosity (Fabian)

● Weak turbulence?

Cosmic ray pressure (Miniati, 
Pfrommer, Skillman, et al.)

Conselice et al. (2001) – H filaments 
surrounding central galaxy (NGC 1275) 
in Perseus Cluster
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Current cluster constraints

Rozo et al. (2010)

maxBCG clusters from SDSS – optical richness-mass relation
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The power of multiple observables

Rozo et al. (2010)

X-ray luminosity
X-ray temperature
Y

X

Optical richness
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Conclusions

Understanding the baryonic physics in galaxy 
clusters is key to using them as precision 
cosmological probes.

This understanding will be based (partly) on models 
+ direct simulation for the next decade at least.

If we can use models + direct simulation to inform 
self-calibration, clusters may contribute dark energy 
constraints comparable to other probes.
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